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1. Introduction and Preliminaries
Molecular descriptors, results of functions mapping molecule’s chemical infor-

mation [8] into a number have found applications in modeling many physicochem-
ical properties in QSAR and QSPR studies [1]. Damir Vukicević et al. [10] ob-
served that many of these descritors are defined simply as the sum of individual
bond contributions. Among the 148 discrete Adriatic invariants studied in [10],
whose predictive properties were evaluated against the benchmark datasets of the
International Academy of Mathematical Chemistry, 20 invariants were selected
as significant predictors of physicochemical properties. One of these useful dis-
crete Adriatic invariants is the symmetric division deg invariant which is defined
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as SDD(Γ) =
∑

xy∈E(Γ)

(
dΓ(x)
dΓ(y)

+ dΓ(y)
dΓ(x)

)
, where dΓ(x) is the degree of vertex x in Γ.

Among all the existing molecular descriptors, SDD invariant has the best corre-
lating ability for predicting the total surface area of polychlorobiphenys [10], see
more details in [2], [3], [4], [5], [6], [9].

Let Γ be a connected graph. The derived graph Γab is obtained from Γ, whose
vertex set V (Γ) ∪ E(Γ). The two vertices t1 and t2 are adjacent in Γab if and only
if the following conditions are holds:
(i) t1, t2 ∈ V (Γ), t1 and t2 are adjacent in Γ if a = + and t1 and t2 are not adjacent
in Γ if a = −.
(ii) t1 ∈ V (Γ), t2 ∈ E(Γ), t1 and t2 are incident in Γ if b = + and t1 and t2 are not
incident in Γ if b = −.
2. SDD Invariant of Γab

In this section, we present the results for symmetric division deg invariant of
the derived graph Γab of Γ. The first and second Zagreb invariants of Γ are defined
as M1(Γ) =

∑
xy∈E(Γ)

(λΓ(x) + λΓ(y)) and M2(Γ) =
∑

xy∈E(Γ)

(λΓ(x)λΓ(y)).

Theorem 2.1. Let Γ be a (n,m)-graph. Then SDD(Γ++) = SDD(Γ)+M1(Γ)+n.
Proof. Partition the edge set of the graph Γ++ into two subsets, namely, A1 =
{xy|xy ∈ E(Γ)} and A2 = {xe|the vertex x is incident to the edge e in Γ}. One
can observe that the cardinality of both the subsets A1 and A2 are m and 2m,
respectively. By the structure of the graph Γ++, if x ∈ V (Γ) then λΓ++(x) = 2λΓ(x)
and if e ∈ E(Γ) then λΓ++(e) = 2. Hence

SDD(Γ++) =
∑

xy∈E(Γ++)

λ2
Γ++(x) + λ2

Γ++(y)

λΓ++(x)λΓ++(y)

=
∑
xy∈A1

λ2
Γ++(x) + λ2

Γ++(y)

λΓ++(x)λΓ++(y)
+
∑
xe∈A2

λ2
Γ++(x) + λ2

Γ++(e)

λΓ++(x)λΓ++(e)

=
∑

xy∈E(Γ)

4λ2
Γ(x) + 4λ2

Γ(y)

4λΓ(x)λΓ(y)
+
∑
xe∈A2

4λ2
Γ(x) + 4

4λΓ(x)

= SDD(Γ) +
∑
xe∈A2

λ2
Γ(x) + 1

λΓ(x)
, by the definition of SDD index of Γ.

In the second sum, the quantity
λ2

Γ(x)+1

λΓ(x)
appears λΓ(x) times. Hence the sum is
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equivalent to

SDD(Γ++) = SDD(Γ) +
∑

x∈V (Γ)

λΓ(x)(λ2
Γ(x) + 1)

λΓ(x)

= SDD(Γ) +M1(Γ) + n.

Theorem 2.2. Let Γ be a (n,m)-graph. Then SDD(Γ+−) = m(m+ 2) + (n− 2)2.
Proof. Partition the edge set of the graph Γ+− into two subsets, namely, A1 =
{xy|xy ∈ E(Γ)} and A2 = {xe|the vertex x is not incident to the edge e in Γ}.
One can observe that the cardinality of both sets A1 and A2 are m and m(n− 2),
respectively. By the structure of the graph Γ++, if x ∈ V (Γ) then λΓ+−(x) = m
and if e ∈ E(Γ) then λΓ+−(e) = n− 2. Therefore

SDD(Γ+−) =
∑

xy∈E(Γ+−)

λ2
Γ+−(x) + λ2

Γ+−(y)

λΓ+−(x)λΓ+−(y)

=
∑
xy∈A1

λ2
Γ+−(x) + λ2

Γ+−(y)

λΓ+−(x)λΓ+−(y)
+
∑
xe∈A2

λ2
Γ+−(x) + λ2

Γ+−(e)

λΓ+−(x)λΓ+−(e)

=
∑

xy∈E(Γ)

m2 +m2

m2
+
∑
xe∈A2

m2 + (n− 2)2

m(n− 2)
.

In the first sum m times and second sum m(n − 2) times of the above equation.
Hence the total sum is equivalent to

SDD(Γ+−) = m(m+ 2) + (n− 2)2.

Theorem 2.3. Let Γ be a (n,m)-graph. Then SDD(Γ−+) = n(n−1)2+m(n2−4n+6)
n−1

.
Proof. Partition the edge set of Γ−+ into two subsets, namely, A1 = {xy|xy /∈
E(Γ)} and A2 = {xe|the vertex x is incident to the edge e in Γ}. One can see that
the number of elements in the sets A1 and A2 are (n2 )−m and 2m, respectively. By
the structure of the graph Γ−+, if x ∈ V (Γ) then λΓ−+(x) = n− 1 and if e ∈ E(Γ)
then λΓ−+(e) = 2. Hence

SDD(Γ−+) =
∑

xy∈E(Γ−+)

λ2
Γ−+(x) + λ2

Γ−+(y)

λΓ−+(x)λΓ−+(y)

=
∑
xy∈A1

λ2
Γ−+(x) + λ2

Γ−+(y)

λΓ−+(x)λΓ−+(y)
+
∑
xe∈A2

λ2
Γ−+(x) + λ2

Γ−+(e)

λΓ−+(x)λΓ−+(e)

=
∑

xy/∈E(Γ)

((n− 1)2 + (n− 1)2

(n− 1)2
+
∑
xe∈A2

(n− 1)2 + 22

2(n− 1)
.
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In the first sum (n2 ) − m times and second sum 2m times of the above equation.
Hence the total sum is equivalent to

SDD(Γ−+) = 2
(

(n2 )−m
)

+ 2m
(n2 − 2n+ 5

2(n− 1)

)
= n(n− 1) +

m(n2 − 4n+ 6)

n− 1
.

Theorem 2.4. Let Γ be a (n,m)-graph. Then α
(n+m−1−2∆(Γ))2 + β

(n+m−1−2∆(Γ))(n−2)
≤

SDD(Γ−−) ≤ α
(n+m−1−2δ(Γ))2 + β

(n+m−1−2δ(Γ))(n−2)
, where α = (n + m − 1)2(n(n −

1)− 2m) + 4F (Γ)− 4(n + m− 1)M1(Γ) and β = m(n− 2)(n + m− 1)2 + m(n−
2)3 − 8m2(n+m− 1) + 4(2m+ n− 1)M1(Γ)− 4F (Γ).
Proof. Partition the edge set of Γ−− into two subsets, namely, A1 = {xy|xy /∈
E(Γ)} and A2 = {xe|the vertex x is not incident to the edge e in Γ}. One can ob-
serve that |A1| = (n2 )−m and |A1| = m(n−2). By the structure of the graph Γ−−, if
x ∈ V (Γ) then λΓ−−(x) = n+m−1−2λΓ(x) and if e ∈ E(Γ) then λΓ−−(e) = n−2.
Thus

SDD(Γ−−) =
∑

xy∈E(Γ−−)

λ2
Γ−−(x) + λ2

Γ−−(y)

λΓ−−(x)λΓ−−(y)

=
∑
xy∈A1

λ2
Γ−−(x) + λ2

Γ−−(y)

λΓ−−(x)λΓ−−(y)
+
∑
xe∈A2

λ2
Γ−−(x) + λ2

Γ−−(e)

λΓ−−(x)λΓ−−(e)

=
∑

xy/∈E(Γ)

(n+m− 1− 2λΓ(x))2 + (n+m− 1− 2λΓ(y))2

(n+m− 1− 2λΓ(x))(n+m− 1− 2λΓ(y))

+
∑
xe∈A2

(n+m− 1− 2λΓ(x))2 + (n− 2)2

(n+m− 1− 2λΓ(x))(n− 2)

= I1 + I2,

where

I1 =
∑

xy/∈E(Γ)

(n+m− 1− 2λΓ(x))2 + (n+m− 1− 2λΓ(y))2

(n+m− 1− 2λΓ(x))(n+m− 1− 2λΓ(y))

=
∑

xy/∈E(Γ)

2(n+m− 1)2 + 4(λ2
Γ(x) + λ2

Γ(y))− 4(n+m− 1)(λΓ(x) + λΓ(y))

(n+m− 1− 2λΓ(x))(n+m− 1− 2λΓ(y))
.

Since for any vertex x in Γ, δ(Γ) ≤ λΓ(x) ≤ ∆(Γ). Therefore

I1 ≤
∑

xy/∈E(Γ)

2(n+m− 1)2 + 4(λ2
Γ(x) + λ2

Γ(y))− 4(n+m− 1)(λΓ(x) + λΓ(y))

(n+m− 1− 2δ(Γ))2
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=
2(n+m− 1)2((n2 )−m) + 4F (Γ)− 4(n+m− 1)M1(Γ)

(n+m− 1− 2δ(Γ))2
.

I2 =
∑
xe∈A2

(n+m− 1− 2λΓ(x))2 + (n− 2)2

(n+m− 1− 2λΓ(x))(n− 2)

=
∑
xe∈A2

(n+m− 1)2 + 4λ2
Γ(x)− 4(n+m− 1)λΓ(x) + (n− 2)2

(n+m− 1− 2λΓ(x))(n− 2)

≤
∑

x∈V (Γ)

(m− λΓ(x))
((n+m− 1)2 + 4λ2

Γ(x)− 4(n+m− 1)λΓ(x) + (n− 2)2

(n+m− 1− 2δ(Γ))(n− 2)

)

=
m
(
n(n+m− 1)2 + 4M1(Γ)− 8m(n+m− 1) + n(n− 2)2

)
(n+m− 1− 2δ(Γ))(n− 2)

−

(
2m(n+m− 1)2 + 4F (Γ)− 4(n+m− 1)M1(Γ) + 2m(n− 2)2

)
(n+m− 1− 2δ(Γ))(n− 2)

=
m(n− 2)(n+m− 1)2 +m(n− 2)3 − 8m2(n+m− 1)

(n+m− 1− 2δ(Γ))(n− 2)

+
4(2m+ n− 1)M1(Γ)− 4F (Γ)

(n+m− 1− 2δ(Γ))(n− 2)
.

Adding I1 and I2 we get the result.

3. SDD Invariant of Γab

In this section, we provide the formulae for symmetric division deg invariant of
the complement of the derived graph Γab of Γ.

Theorem 3.1. Let Γ be a (s,m)-graph. Then α′

(s+m−1−2∆(Γ))2 + β′

(s+m−1−2∆(Γ))(s+m−3)

+m(m−1) ≤ SDD(Γ++) ≤ α′

(s+m−1−2δ(Γ))2 + β′

(s+m−1−2δ(Γ))(s+m−3)
+m(m−1), where

α′ = (s+m−1)2(s(s−1)−2m)+4F (Γ)−4(s+m−1)M1(Γ) and β′ = m(s−2)(s+
m− 1)2 +m(s− 2)(s+m− 3)2 − 8m2(s+m− 1) + 4(2m+ s− 1)M1(Γ)− 4F (Γ).
Proof. Partition the edge set of Γ++ into three subsets, namely, A1 = {xy|xy /∈
E(Γ)}, A2 = {xe|the vertex x is not incident to the edge e in Γ} andA3 = {e1e2|e1,
e2 ∈ E(Γ)}. One can check that |A1| = (n2 ) −m, |A2| = m(s − 2) and |A3| = (m2 ).
By the structure of the graph Γ++, if x ∈ V (Γ) then λΓ++(x) = s+m− 1− 2λΓ(x)
and if e ∈ E(Γ) then λΓ++(e) = s+m− 3. Therefore

SDD(Γ++) =
∑

xy∈E(Γ++)

λ2
Γ++

(x) + λ2
Γ++

(y)

λΓ++(x)λΓ++(y)
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=
∑
xy∈A1

λ2
Γ++

(x) + λ2
Γ++

(y)

λ
Γ++(x)λ

Γ++(y)
+
∑
xe∈A2

λ2
Γ++

(x) + λ2
Γ++

(e)

λ
Γ++(x)λ

Γ++(e)
+

∑
e1e2∈A3

λ2
Γ++

(e1) + λ2
Γ++

(e2)

λ
Γ++(e1)λ

Γ++(e2)

=
∑

xy/∈E(Γ)

(s+m− 1− 2λΓ(x))2 + (s+m− 1− 2λΓ(y))2

(s+m− 1− 2λΓ(x))(s+m− 1− 2λΓ(y))

+
∑
xe∈A2

(s+m− 1− 2λΓ(x))2 + (s+m− 3)2

(s+m− 1− 2λΓ(x))(s+m− 3)

+
∑

e1e2∈A3

(s+m− 3)2 + (s+m− 3)2

(s+m− 3)(s+m− 3)

= I1 + I2 + I3,

where

I1 =
∑

xy/∈E(Γ)

(s+m− 1− 2λΓ(x))2 + (s+m− 1− 2λΓ(y))2

(s+m− 1− 2λΓ(x))(s+m− 1− 2λΓ(y))

=
2(s+m− 1)2((n2 )−m) + 4F (Γ)− 4(s+m− 1)M1(Γ)

(s+m− 1− 2δ(Γ))2
,

a similar argument of Theorem (2.4).

I2 =
∑
xe∈A2

(s+m− 1− 2λΓ(x))2 + (s+m− 3)2

(s+m− 1− 2λΓ(x))(s+m− 3)

=
∑
xe∈A2

(s+m− 1)2 + 4λ2
Γ(x)− 4(s+m− 1)λΓ(x) + (s+m− 3)2

(s+m− 1− 2λΓ(x))(s+m− 3)

≤
∑

x∈V (Γ)

(m− λΓ(x))
((s+m− 1)2 + 4λ2

Γ(x)− 4(s+m− 1)λΓ(x) + (s+m− 3)2

(s+m− 1− 2δ(Γ))(s+m− 3)

)

=
m
(
s(s+m− 1)2 + 4M1(Γ)− 8m(s+m− 1) + s(s+m− 3)2

)
(s+m− 1− 2δ(Γ))(s+m− 3)

−

(
2m(s+m− 1)2 + 4F (Γ)− 4(s+m− 1)M1(Γ) + 2m(s+m− 3)2

)
(s+m− 1− 2δ(Γ))(s+m− 3)

=
4(2m+ s− 1)M1(Γ)− 4F (Γ)

(s+m− 1− 2δ(Γ))(s+m− 3)

+
m(s− 2)(s+m− 1)2 +m(s− 2)(s+m− 3)2 − 8m2(s+m− 1)

(s+m− 1− 2δ(Γ))(s+m− 3)
.
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I3 =
∑

e1e2∈E(Γ)

2(s+m− 3)2

(s+m− 3)2
= 2(m2 ) = m(m− 1).

From I1, I2 and I3, we get the desired result.

Theorem 3.2. Let Γ be a (s,m)-graph. Then SDD(Γ+−) = s(s − 1) + m(m −
3) + 2m((s−1)2+(m+1)2)

(s−1)(m+1)
.

Proof. Partition the edge set of Γ+− into three subsets, namely, A1 = {xy|xy /∈
E(Γ)}, A2 = {xe|the vertex x is incident to the edge e in Γ} and A3 = {e1e2| e1,
e2 ∈ E(Γ)}. One can check that |A1| = (s2)−m, |A2| = 2m and |A3| = (m2 ). By the
structure of the graph Γ+−, if x ∈ V (Γ) then λΓ+−(x) = s− 1 and if e ∈ E(Γ) then
λΓ+−(e) = m+ 1. Therefore

SDD(Γ+−) =
∑

xy∈E(Γ+−)

λ2
Γ+−(x) + λ2

Γ+−(y)

λ
Γ+−(x)λ

Γ+−(y)

=
∑
xy∈A1

λ2
Γ+−(x) + λ2

Γ+−(y)

λ
Γ+−(x)λ

Γ+−(y)
+
∑
xe∈A2

λ2
Γ+−(x) + λ2

Γ+−(e)

λ
Γ+−(x)λ

Γ+−(e)
+

∑
e1e2∈A3

λ2
Γ+−(e1) + λ2

Γ+−(e2)

λ
Γ+−(e1)λ

Γ+−(e2)

= 2
(

(n2 )−m
)

+ 2m
((s− 1)2 + (m+ 1)2

(s− 1)(m+ 1)

)
+ 2(m2 )

= s(s− 1) +m(m− 3) +
2m((s− 1)2 + (m+ 1)2)

(s− 1)(m+ 1)
.

Theorem 3.3. Let Γ be a (s,m)-graph. Then

SDD(Γ−+) = m(m+ 1)+ m(s−2)(m2+(s+m−3)2)
m(s+m−3)

.

Proof. Partition the edge set of Γ−+ into three subsets, namely, A1 = {xy|xy ∈
E(Γ)}, A2 = {xe|the vertex x is not incident to the edge e in Γ} andA3 = {e1e2|e1

, e2 ∈ E(Γ)}. One can check that |A1| = m, |A2| = m(s − 2) and |A3| = (m2 ). By
the structure of the graph Γ−+, if x ∈ V (Γ) then λΓ−+(x) = m and if e ∈ E(Γ)
then λΓ−+(e) = s+m− 3. Therefore

SDD(Γ−+) =
∑

xy∈E(Γ−+)

λ2
Γ−+

(x) + λ2
Γ−+

(y)

λ
Γ−+(x)λ

Γ−+(y)

=
∑
xy∈A1

λ2
Γ−+

(x) + λ2
Γ−+

(y)

λ
Γ−+(x)λ

Γ−+(y)
+
∑
xe∈A2

λ2
Γ−+

(x) + λ2
Γ−+

(e)

λ
Γ−+(x)λ

Γ−+(e)
+

∑
e1e2∈A3

λ2
Γ−+

(e1) + λ2
Γ−+

(e2)

λ
Γ−+(e1)λ

Γ−+(e2)

= 2m+m(s− 2)
(m2 + (s+m− 3)2

m(s+m− 3)

)
+ 2(m2 )
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= m(m+ 1) +
m(s− 2)(m2 + (s+m− 3)2)

m(s+m− 3)
.

Theorem 3.4. Let Γ be a (s,m)-graph. Then SDD(Γ−−) = SDD(Γ) + m(m −
1) + 4M1(Γ)+s(m+1)2

2(m+1)
.

Proof. Partition the edge set of Γ−− into three subsets, namely, A1 = {xy|xy ∈
E(Γ)}, A2 = {xe|the vertex x is incident to the edge e in Γ} and A3 = {e1e2|e1

, e2 ∈ E(Γ)}. One can check that |A1| = m, |A2| = 2m and |A3| = (m2 ). By the
structure of the graph Γ−−, if x ∈ V (Γ) then λΓ−−(x) = 2λΓ(x) and if e ∈ E(Γ)
then λΓ−−(e) = m+ 1. Therefore

SDD(Γ−−) =
∑

xy∈E(Γ−−)

λ2
Γ−−

(x) + λ2
Γ−−

(y)

λ
Γ−−

(x)λ
Γ−−

(y)

=
∑
xy∈A1

λ2
Γ−−

(x) + λ2
Γ−−

(y)

λ
Γ−−

(x)λ
Γ−−

(y)
+
∑
xe∈A2

λ2
Γ−−

(x) + λ2
Γ−−

(e)

λ
Γ−−

(x)λ
Γ−−

(e)
+

∑
e1e2∈A3

λ2
Γ−−

(e1) + λ2
Γ−−

(e2)

λ
Γ−−

(e1)λ
Γ−−

(e2)

=
∑

xy∈E(Γ)

4λ2
Γ(x) + 4λ2

Γ(y)

4λΓ(x)λΓ(y)
+
∑
xe∈A2

4λ2
Γ(x) + (m+ 1)2

2λΓ(x)(m+ 1)
+

∑
e1e2∈A3

2(m+ 1)2

(m+ 1)2

=
∑

xy∈E(Γ)

λ2
Γ(x) + λ2

Γ(y)

λΓ(x)λΓ(y)
+

∑
x∈V (Γ)

λΓ(x)
(

4λ2
Γ(x) + (m+ 1)2

)
2dΓ(x)(m+ 1)

+
∑

e1e2∈A3

(2)

= SDD(Γ) +m(m− 1) +
4M1(Γ) + s(m+ 1)2

2(m+ 1)
.

4. Conclusion
This article, we obtained the expressions for symmetric division deg invariant

of some derived graph and its complements. and also evinced the some interesting
results .
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[7] Pólya G. and Szego G., Problems and Theorems in Analysis, Series, Integral
Calculus, Theory of Functions, Springer-Verlag, Berlin, (1972).

[8] Todeschini R., Consonni V., Handbook of Molecular Descriptors, Wiley-
VCH, Weinheim, (2000).

[9] Vasilev A., Upper and lower bounds of symmetric division deg index, Iranian
J. Math. Chem., 5(2)(2014), 91-98.
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